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This paper studies the sampling strategies for the
Expert Network (EexNet), a statistical learning sys-
tem usedfor patient record classification at the Mayo
Clinic. The goal is to achieve high accuracy classi-
fication at an affordable computational cost in very
large applications. The learning curves of ExpNet
were observed with respect to the choice of training
resources, the size, vocabulary coverage and category
coverage ofa training set, and the category distribu-
tion over training instances. A method combining ad-
vantages of different sampling strategies is proposed
and evaluated using a large training corpus. As a re-
sult, Expert Network has achieved its nearly-optimal
classification accuracy (measured by average preci-
sion) using a relatively small training set, with a fast
real-time response which satisfies the needs ofhuman-
machine interaction.

INTRODUCTION

Assigning predefined categories to free texts
(text classification or text categorization) has wide
application since categories are often used to index
real-world databases. At the Mayo Clinic, for exam-
ple, about 1.6 million diagnoses in patient records are
coded annually using HICDA-2 (the Hospital Adap-
tation of ICDA, 2nd Edition)[1] for the purposes of
billing and research. Manual categorization remains
the dominant method in practice, which is both costly
and error-prone. To improve the quality and to re-
duce the cost, we have developed several classifica-
tion systems and used them to assist human classi-
fication in the Section of Medical Information Re-
sources, Mayo Clinic. A preliminary evaluation[2]
showed that both classification accuracy and coding
speed were improved by using these tools, and that
the systems which use statistical learning techniques
are more effective than the systems which search cat-
egories based on string matching between texts and
category names or definition phrases.

Our statistical classification systems are named the
Linear Least Squares Fit (LLSF) mapping and the Ex-
pert Network (ExpNet). LLSF is a regression method
which predicts the categories of a new text based
on the correlations between the words and categories
of training texts [3]. ExpNet is a Nearest Neigh-
bor (NN) classification method which ranks candi-
date categories for a new text based on the categories
of its neighbors in training texts[4] [5]. The two
methods were almost equally effective with respect
to classification accuracy in our experiments when
using the same training data. Both significantly out-

performed alternative methods such as word-based
matching methods which do not use any human
knowledge, and thesaurus-based or rule-based meth-
ods which are heavily dependent on manually coded
human knowledge. Other studies [6] showed supe-
rior results of NN classification over a rule-based
approach using manually coded expert knowledge.
Comparison of LLSF and ExpNet with more sophisti-
cated learning methods such as neural networks,
Bayesian belief networks and classification-tree meth-
ods remains an open area of research. Part of the dif-
ficulty is that none of the more sophisticated methods
easily scale to very large text classification problems
with thousands or tens of thousands of categories, due
to computational tractability issues. LLSF and Exp-
Net are relatively efficient and therefore scale more
easily. Solving a linear regression is generally sim-
pler than finding a non-linear solution using neural
networks, and the computation in NN classification
is even more efficient[4]. Both LLSF and ExpNet
have their strengths and weaknesses. LLSF requires
an intensive off-line training, which makes it more
difficult than ExpNet to scale up. However, once the
training is done, the on-line category ranking for a
given text is relatively fast. ExpNet needs little train-
ing in advance, but requires an on-line search through
unique training texts [4] for the NNs of each testing
text1. Hence, attaining real-time response for the NN
search is a computational problem when the train-
ing set is very large. Some techniques for scaling-up
LLSF were reported in a separate paper [7]. Here we
focus on ExpNet and its application to a very large
and practical problem, the classification of diagnoses
in Mayo patient records using HICDA-2 categories.

The research interest in this paper is on sampling
strategies for statistical learning given a method. We
address the question of how to obtain a training set
which contains sufficient information and is of a rea-
sonable size. We choose ExpNet over LLSF for this
study because it allows us to explore a large prob-
lem which cannot be handled by the current LLSF
system. There are 29,741 categories in HICDA-2,
and about 2.4 million diagnoses (DXs) coded by hu-
mans with computer assistance in our section each
year. These coded DXs are all eligible for training in
ExpNet. However, our current production system has
only used a subset of 205,660 DXs (a few months

'ExpNet uses a vector of word weights to represent a
text, and the cosine value of two vectors to measure the
similarity of two texts. The cosine value reflects how much
the two texts are in common, in terms of shared words.
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accumulation) plus the 29,741 HICDA-2 definition
phrases as the training set, for which the ExpNet
has an on-line response time of about 1.5 seconds
per DX when using a SPARCstation 10. We can-
not use all available DXs for training because this
would make the on-line response time too slow for
the user-machine interaction. For example, if we use
5 million DXs for training, the response time would
increase to 32 seconds per DX; if we use 10 million
DXs, then the response time would be more than one
minute. The point is, we must decide what to do with
the large amounts of available training data. Poten-
tial solutions for a large NN classification problem
include:

* hardware solutions, e.g. Thinking Machine's
work using massive parallel computers to speed
up the NN search [6] [8];

* software solutions, e.g. to partition training in-
stances in advance and to search selectively in-
stead of exhaustively [9]; or

* sampling solutions, i.e. to find a relatively small
training set which has sufficient information for
the classification.

This paper addresses the third direction. We want to
know how large a training set is necessary before pur-
suing hardware or software solutions for a very large
problem. Statistical sampling theories have shown
that one can obtain a fairly accurate estimate about a
large population using a relatively small sample. The
question here is, how do we minimize a training set
for ExpNet without losing useful information for text
classification.

SAMPLING STRATEGIES

Several questions need to be answered when choosing
sampling strategies:

* What kind of texts should be used for training?
Should we use coded DXs only, or should we
use HICDA-2 category definition phrases in ad-
dition?

* What criteria should be used to judge a train-
ing set? Which criterion is more important,
the usefulness (how effective it is in terms of
categorization accuracy and computational ef-
ficiency) or the completeness (the coverage of
possible DXs)?

* How do we measure the usefulness and com-
pleteness of a training set? Are vocabulary
size and coverage of unique categories impor-
tant measures? Is DX instance distribution over
categories more important than vocabulary cov-
erage and category coverage?

We believe that Mayo DXs should be the major re-
source of training data, because instances from the

application itself represent the application the best.
The category definition phrases should be used only
if there is experimental support of their usefulness.

We prefer usefulness over completeness. The useful-
ness of a training set should be judged based on its
effects on ExpNet in classifying the majority of DXs,
not just a few cases. Computational efficiency should
also be counted in measuring the usefulness.

We think that DX distribution over categories in a
training set would be more informative than vocab-
ulary coverage and category coverage for analyzing
the impact of the training set on the effectiveness of
a statistical classification method. Not every category
is equally important for training. For example, the
training collection of 205,660 DXs mentioned before
contains 234,465 category instances in which 66% of
the HICDA-2 categories are missing, 10% of the to-
tal categories had only one instance or 3027 instances
together, and 1.4% of the total categories has more
than one hundred instances each or 146,964 instances
together. This means that if ExpNet fails to classify
the 76% rare categories which have one instance or
less, the expected error rate is 3027/234465 or 1.2%.
On the other hand, if ExpNet fails to classify the 1.4%
most common categories, then the expected error rate
is 146964/234465 or 62.7%. Clearly, whether com-
mon categories are well represented in a training set
is crucial for the global effectiveness of classifica-
tion, while missing a large number of rare categories
in a training set may have a statistically insignificant
impact only. Since the NN classification follows a
majority-vote principle, it often favors the categories
with more instances in the training set, than those
which are not. To optimize the global effectiveness,
we want the more important categories (as measured
by frequency) to be better represented than the less
important ones in the training sample. Pursuing an
even coverage for all categories or words, therefore,
is not a suitable sampling strategy.

To verify our assertions, we included the following
sampling strategies in this study:

1) Natural-occurrence sampling: leave the DXs in
the order of the time they were collected from patient
records and coded by humans, and take a continuous
chunk as a training set. This is the current strat-
egy of our production system (although we have only
used the first chunk of accumulated DXs). The ad-
vantage of such a sampling method is that a training
set would naturally reflect the category distribution in
the population, and that the classification of ExpNet
would favor common DXs over rare ones. A poten-
tial weakness is that a training set may have too many
redundant instances of common categories, and may
not have enough coverage of rare categories.

2) Completeness-oriented sampling: prefer some in-
stances over others if they contribute more new words
or categories to a training set. An extreme exam-
ple of this would be to take the HICDA-2 definition
phrases only as a training set or as the dominating
part of a training set, because they contain all the
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unique categories, and more unique words than a nat-
ural chunk of DXs would contain. Such a method
ignores the natural distribution of categories in the
original population, and may consequently decrease
the over-all classification effectiveness of ExpNet be-
cause the common cases are not well represented in a
training set. A potential advantage of such a strategy
is to have better coverage of rare cases.

3) Sort-and-split sampling: sort the DXs by categories
first, and sort the DXs with the same category in
alphabetical order, then split the sorted DXs into k
subsets in a way that the first DX in each k DXs be-
longs to the first subset, and the second DX in each
k DXs belongs to the second subset, and so on. The
attempt is to combine the advantages of the two strate-
gies mentioned above, that is, to favor the majority
cases and also to have reasonable coverage of rare
cases. For example, when applying such a strategy
with k = 2, every category with two or more instances
in the population will have at least one instance in a
training set. On the other hand, a category with 100
instances will have 50 instances in the training set.
The absolute difference is reduced, but the relative
difference remains.

EMPIRICAL VALIDATION

The Data
A collection of eligible training data is needed as a
pool from which different sampling strategies can be
applied. The training set of our current production
system is chosen for such a purpose, which consists
of 205,660 diagnoses from Mayo medical records in
the period of October 1993 to March 1994, and the
29,741 category definition phrases in HICDA-2. A
diagnosis is a descriptive free-text with 1-26 words,
or 3 words per DX on average. About 88% of these
diagnoses have a uniquely matched category; the rest
have 2-7 categories. A category definition in HICDA-
2 has 3 or 4 words on average. For convenience, we
use text to refer to either a DX text or a category def-
inition phrase, and code to mean the unique identifier
of a category. The DXs and the category definition
phrases together form a collection (the superset) of
235,401 training texts each of which has one or more
category codes assigned by humans or as defined in
HICDA-2. The vocabulary size of these training texts
is 15,994 unique words. Subsets are derived from this
superset, according to different sampling strategies.

A testing set is selected for evaluating the sampling
strategies. There are five testing sets which were col-
lected for our previous evaluation of different classi-
fication methods [2]. Each set consists of about 1000
DXs arbitrarily chosen from the patient records at the
time of that evaluation. By checking the common
words and categories of each of these testing sets and
the training superset mentioned above, we found that
these testing sets are similar in the sense that they
all have about 97-98% of the words and 96-97% of
the categories covered by the training DXs mentioned
above. Hence, one of the five testing sets was arbi-
trarily chosen for this study, containing 1071 DXs,
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Figure 1: Learning curve of ExpNet using sort-and-
split sampling.

1249 unique words and 726 unique categories.

Preprocessing was applied to these training and test-
ing sets for the removal of punctuation and numbers,
and for changing uppercase letters to lowercase; no
stemming or removal of "noise words" was applied.

The Results
Figure 1 shows the learning curve of ExpNet in re-
sponse to the number of texts or the size of a training
subset. The training sets are derived using the sort-
and-split sampling strategy mentioned in the previous
section. The 205,660 DXs were sorted by codes first,
and the DXs with a same code were sorted in al-
phabetical order. A subset was obtained by selecting
the first of every i DXs. By setting split parameter
k to 2, 4, 8, ..., 1024, subsets with sizes of 200,
401, 803, ..., 102,830 DXs were obtained. These
subsets were used as training sets for ExpNet, and
evaluated using the testing set of DXs mentioned be-
fore. The full set of 205,660 DXs and the superset
of 235,401 texts were also evaluated. To evaluate the
classification effectiveness, we computed the conven-
tional ten-point average precision (AVGP) of cate-
gory ranking, i.e. we computed the precision values
at recall thresholds of 10%, 20%, ... 100%[10], and
averaged these values as a global measure. The re-
sults are interpolated into the star-curve in Figure 1;
we call it the learning curve of ExpNet. The dashed
lines correspond to the results of using the full set
(205,660 Mayo DXs) and the superset (205,660 Mayo
DXs plus 29,741 HICDA-2 definition phrases), re-
spectively. The triangle-curve shows the ratio of the
number of unique words in a training set divided by
the total number of unique words in the superset.
The diamond-curve shows the ratio of the number
of unique categories in a training set divided by the
total number of unique categories in the superset. The
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Figure 2: Trade-off between effectiveness and effi-
ciency of ExpNet.

interesting points are:

1) The learning curve rises rapidly when the training
sets are small, and becomes relatively flat when the
training set size achieves 100,000 texts or larger. This
means that high-frequency DXs were included even
in a small training set, and that these DXs were more
influential in the over-all performance than rare DXs.
This learning curve also indicates that further increase
in the size of a training set beyond the 200,000 level
is unlikely to have significant improvement.

2) The slope of the unique-word curve and the unique-
category curve is much larger than the learning curve
for most of the regions, except the very left end of
this graph. This means that the improvement in word
coverage and category coverage of a training set does
not necessarily transfer into an improvement in classi-
fication effectiveness. In other words, a large number
of words and categories are not crucial for the global
classification performance because they are rare.

3) Adding the HICDA-2 phrases to the training DXs
did not improve the AVGP by much, although it sig-
nificantly increased the vocabulary and categories cov-
erage of the training set. This means that most of the
words and categories which are needed for classifica-
tion are already included in the training DXs, and that
the category definition phrases contribute little useful
information to the training.

Figure 2 shows the trade-off between AVGP and the
on-line response time of ExpNet. The average CPU
seconds for category ranking per DX was measured.
A significant time increase was observed when the
HICDA-2 definition phrases are added to the train-
ing set, because most of these definition phrases are
unique to the entire collection, and the response time
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Figure 3: Learning curves of ExpNet using different
sampling strategies.

of ExpNet is proportional to the number of unique
training texts. Clearly, using HICDA-2 in addition to
Mayo DXs for training doubled the computation time
for only an insignificant improvement in classification
effectiveness.

Figure 3 compares the learning curve in Figure 1

with the learning curve (dot-curve) when the train-
ing sets were constructed in a different way. That is,
the HICDA-2 phrases were used as the basic train-
ing set, and each of the subsets of the Mayo DXs
was added to the basic set respectively. When using
the 29,741 HICDA-2 phrases alone for training, the
AVGP was only 42% which is between the results of
using 400-800 DXs for training, and is similar to the
performance level as applying a word-based match-
ing between DXs and HICDA-2 phrases (which had
an AVGP value of 44% in our experiment). On the
other hand, when using a similar amounts (25,707) of
DXs instead of the 29,741 HICDA-2 phrases for train-
ing, the AVGP was 77%, or a 83% relative improve-
ment over the result of using the HICDA-2 phrases.
Comparing the two curves in this graph, it is clear
that given any fixed size of a training set, the use
of HICDA-2 phrases plus DXs had no significant
improvement over using DXs alone, if any. How-
ever, the on-line computation time in the former is
much higher than in the latter, because the HICDA-2
phrases contribute more unique texts to a training set
than DXs do, as we discussed before.

The natural-occurrence sampling was also tested.
Leaving the 205,660 DXs in the order of time when
they were collected from patient records, we divided
them into four equally-sized subsets sequentially.
Each of these subsets was used for training; the AVGP
values was 77.6% on average. For comparison, we
also tested four training subsets with the same size but
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using the sort-and-split strategy; the averaged AVGP
value was 80.0%. The improvement of the latter
over the former comes from a better balance between
high-frequency and low-frequency categories. That
is, the influences of high-frequency categories and
low-frequency categories are adjusted in a way that
globally improved the results. This experiment also
indicates that applying the sort-and-split strategy to a
larger pool of training data, to draw a subset with the
same size as the current superset, and use it instead
of the superset, we may have an improved result.

Note that in all the above experiments, we did not ap-
ply removal of "noise words" because this is not the
focus of this paper. When applying word removal
using a standard "stoplist" which consists of articles,
prepositions, conjunctions and some common words,
the AVGP on the 205,660 DX training set was im-
proved from 84% to 86%; the on-line response of
ExpNet was 0.7 seconds per DX.

CONCLUSIONS

This paper studied the sampling strategies for
ExpNet in its application to clinical classification at
the Mayo Clinic. The major findings include:

1) The use of manually coded DXs for training is a
better choice than using both the DXs and the HICDA-
2 category definition phrases, because the latter con-
tributes little useful information at a high computa-
tional cost. Using the sort-and-split sampling strategy
to select a training set from a large DX collection is
better than using a natural chunk of DXs, given a
fixed size of the training sets.

2) ExpNet has achieved its nearly-optimal classifica-
tion performance when using a training set of 205,660
DXs. The 86% precision on average with an on-line
response of 0.7 second per diagnosis is highly satis-
factory for the current needs in our computer-assisted
classification applications. The learning curve ofExp-
Net indicates that significant improvement beyond this
point would be difficult, even if the size of the train-
ing set is significantly increased. Using unnecessarily
large training data would substantially decrease the
efficiency of the system, on the other hand.

Finally, no claim is made that the particular size of an
optimal or nearly-optimal training set for one applica-
tion is generalizable for all applications. The optimal
training set size for Mayo diagnosis classification may
not be the optimal size for MEDLINE document clas-
sification, for example. Given that a diagnosis phrase
has three words on average, and that a MEDLINE
article has typically 150-200 words in its title and
abstract, the necessary amounts of training data may
be larger for the latter than for the former. Never-
theless, the analysis method presented here is gener-
alizable to other domains/applications and alternative
statistical classification methods. Future research top-
ics include a sampling strategies analysis for ExpNet
in categorization of Mayo patient-record data other
than diagnoses and MEDLINE documents, and simi-

lar analyses for the Linear Least Squares Fit mapping
method in MEDLINE document indexing and Mayo
patient record classification.
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